Sheaves That Fail to Represent Matrix Rings
نویسنده
چکیده
There are two fundamental obstructions to representing noncommutative rings via sheaves. First, there is no subcanonical coverage on the opposite of the category of rings that includes all covering families in the big Zariski site. Second, there is no contravariant functor F from the category of rings to the category of ringed categories whose composite with the global sections functor is naturally isomorphic to the identity, such that F restricts to the Zariski spectrum functor Spec on the category of commutative rings (in a compatible way with the natural isomorphism). Both of these no-go results are proved by restricting attention to matrix rings.
منابع مشابه
Omega-almost Boolean rings
In this paper the concept of an $Omega$- Almost Boolean ring is introduced and illistrated how a sheaf of algebras can be constructed from an $Omega$- Almost Boolean ring over a locally Boolean space.
متن کاملDescent for Quasi-coherent Sheaves on Stacks
We give a homotopy theoretic characterization of sheaves on a stack and, more generally, a presheaf of groupoids on an arbitary small site C. We use this to prove homotopy invariance and generalized descent statements for categories of sheaves and quasi-coherent sheaves. As a corollary we obtain an alternate proof of a generalized change of rings theorem of Hovey.
متن کاملStrongly clean triangular matrix rings with endomorphisms
A ring $R$ is strongly clean provided that every element in $R$ is the sum of an idempotent and a unit that commutate. Let $T_n(R,sigma)$ be the skew triangular matrix ring over a local ring $R$ where $sigma$ is an endomorphism of $R$. We show that $T_2(R,sigma)$ is strongly clean if and only if for any $ain 1+J(R), bin J(R)$, $l_a-r_{sigma(b)}: Rto R$ is surjective. Furt...
متن کاملEndomorphisms of Exceptional D-elliptic Sheaves
We relate the endomorphism rings of certain D-elliptic sheaves of finite characteristic to hereditary orders in central division algebras over function fields.
متن کامل